Jónsson Properties for Non-Ordinal Sets Under the Axiom of Determinacy

Jared Holshouser and Stephen Jackson

University of North Texas

2016 Spring AMS Sectional

Jared Holshouser and Stephen Jackson

University of North Texas

The Jónsson Property

Definition

For
$$\kappa$$
 a cardinal and $n \in \omega$,
 $[\kappa]^n = \{(\alpha_1, \cdots, \alpha_n) \in \kappa^n : \alpha_1 < \cdots < \alpha_n\}.$ We also set
 $[\kappa]^{<\omega} = \bigcup_{n \in \omega} [\kappa]^n.$

Definition

We say that κ is **Jónsson** iff whenever $f : [\kappa]^{<\omega} \to \kappa$, there is an $H \subseteq \kappa$ so that $|H| = \kappa$ and $f[[H]^{<\omega}] \neq \kappa$.

Jared Holshouser and Stephen Jackson

The Jónsson Property

Definition

For κ a cardinal and $n \in \omega$, $[\kappa]^n = \{(\alpha_1, \cdots, \alpha_n) \in \kappa^n : \alpha_1 < \cdots < \alpha_n\}.$ We also set $[\kappa]^{<\omega} = \bigcup_{n \in \omega} [\kappa]^n.$

Definition

We say that κ is **Jónsson** iff whenever $f : [\kappa]^{<\omega} \to \kappa$, there is an $H \subseteq \kappa$ so that $|H| = \kappa$ and $f[[H]^{<\omega}] \neq \kappa$.

Remark

In ZFC, the existence of a Jónsson cardinal implies the existence of $0^{\#}$ and is implied by the existence of a measurable cardinal [4].

Jared Holshouser and Stephen Jackson

Some AD Notions

Definition

Recall that under AD, \mathbb{R} cannot be well-ordered. We define Θ to be least cardinal that \mathbb{R} does not surject onto.

Definition

Recall that $L(\mathbb{R})$ is the minimal universe of ZF which contains \mathbb{R} . Under large cardinal hypotheses, $L(\mathbb{R})$ is a model of AD, and its theory is absolute for very complex statements.

Jónsson Properties for Non-Ordinal Sets Under the Axiom of Determinacy

Some AD Notions

Definition

Recall that under AD, \mathbb{R} cannot be well-ordered. We define Θ to be least cardinal that \mathbb{R} does not surject onto.

Definition

Recall that $L(\mathbb{R})$ is the minimal universe of ZF which contains \mathbb{R} . Under large cardinal hypotheses, $L(\mathbb{R})$ is a model of AD, and its theory is absolute for very complex statements.

Remark

It has been shown that under AD, ordinary cardinals have large cardinal properties in $L(\mathbb{R})$. For instance, ω_1 is a measurable cardinal.

Jared Holshouser and Stephen Jackson

The Jónsson Property Under AD

In 2015, S. Jackson, R. Ketchersid, F. Schlutzenberg, and W.H. Woodin [3] proved the following:

Theorem (AD + $V = L(\mathbb{R})$, J/K/S/W)

Let $\kappa < \Theta$ be an uncountable cardinal. Then κ is Jónsson. In fact, if λ is a cardinal between ω_1 and κ , and $f : [\kappa]^{<\omega} \to \lambda$, then there is an $H \subseteq \kappa$ so that $|H| = \kappa$ and

$$|\lambda - f[[H]^{<\omega}]| = \lambda.$$

Jared Holshouser and Stephen Jackson

The Jónsson Property Under AD

In 2015, S. Jackson, R. Ketchersid, F. Schlutzenberg, and W.H. Woodin [3] proved the following:

Theorem (AD + $V = L(\mathbb{R})$, J/K/S/W)

Let $\kappa < \Theta$ be an uncountable cardinal. Then κ is Jónsson. In fact, if λ is a cardinal between ω_1 and κ , and $f : [\kappa]^{<\omega} \to \lambda$, then there is an $H \subseteq \kappa$ so that $|H| = \kappa$ and

$$|\lambda - f[[H]^{<\omega}]| = \lambda.$$

In this paper, they asked whether or not there were non-ordinal Jónsson cardinals. In particular, is \mathbb{R} Jónsson?

Reframing the Question

Definition

For any set X, $[X]^n = \{a \subseteq X : |a| = n\}$ and $[X]^{<\omega} = \bigcup_{n \in \omega} [X]^n$.

Definition

Let X and Y be infinite sets.

- ▶ X is **Jónsson** iff for any $f : [X]^{<\omega} \to X$, there is an $H \subseteq X$ so that |H| = |X| and $f[[H]^{<\omega}] \neq X$.
- ▶ (X, Y) is a **Jónsson pair** iff for any $f : [X]^{<\omega} \to Y$, there is an $H \subseteq X$ so that |H| = |X| and $f[[H]^{<\omega}] \neq Y$.
- ▶ X is strongly Jónsson iff for any $f : [X]^{<\omega} \to X$, there is an $H \subseteq X$ so that |H| = |X| and

$$|X - f[[H]^{<\omega}]| = |X|.$$

▶ (X, Y) is a strong Jónsson pair iff for any $f : [X]^{<\omega} \to Y$, there is an $H \subseteq X$ so that |H| = |X| and

$$|Y - f[[H]^{<\omega}]| = |Y|.$$

Tools From Descriptive Set Theory

We use the following repeatedly.

Lemma (Fusion Lemma)

For each $s \in 2^{<\omega}$ let P_s be a perfect set so that

1.
$$\lim_{|s|\to\infty} diam(P_s) = 0$$
, and

2. for all
$$s \in 2^{<\omega}$$
, $P_{s \frown 0} \cap P_{s \frown 1} = \emptyset$ and $P_{s \frown 0}, P_{s \frown 1} \subseteq P_s$.

Then the fusion $P = \bigcup_{f \in 2^{\omega}} \bigcap_{n \in \omega} P_{f|_n}$ of $\langle P_s : s \in 2^{<\omega} \rangle$ is a perfect set.

Theorem (Mycielski)

Suppose $C_n \subseteq (2^{\omega})^n$ are comeager for all $n \in \omega$. Then there is a perfect set $P \subseteq 2^{\omega}$ so that $[P]^n \subseteq C_n$ for all n.

${\mathbb R}$ is Strongly Jónsson

Theorem (AD, H./Jackson) \mathbb{R} is Strongly Jónsson.

Proof.

- We can break f into component functions, f_n .
- ▶ Find comeager sets on which the *f_n* are continuous.
- Use the result of Mycielski[5] to thread a perfect set through the comeager sets.
- Use continuity and the fusion lemma to inductively thin out the range of the f_n.

$\mathbb R$ and Cardinals

Proposition (AD, H./Jackson)

If $\kappa < \Theta$ is an uncountable cardinal, then (\mathbb{R}, κ) and (κ, \mathbb{R}) are strong Jónsson pairs.

Proposition (AD, H./Jackson)

Let $\kappa, \lambda < \Theta$ be uncountable cardinals. Then $(\kappa \cup \mathbb{R}, \lambda \cup \mathbb{R})$ is a strong Jónsson pair.

Jónsson Properties for Non-Ordinal Sets Under the Axiom of Determinacy

${\mathbb R}$ and Cardinals

Proposition (AD, H./Jackson)

If $\kappa < \Theta$ is an uncountable cardinal, then (\mathbb{R}, κ) and (κ, \mathbb{R}) are strong Jónsson pairs.

Proposition (AD, H./Jackson)

Let $\kappa, \lambda < \Theta$ be uncountable cardinals. Then $(\kappa \cup \mathbb{R}, \lambda \cup \mathbb{R})$ is a strong Jónsson pair.

What about other non-ordinal sets?

Jónsson Properties for Non-Ordinal Sets Under the Axiom of Determinacy

Jónsson Properties for General Sets

Suppose $X \in L_{\Theta}(\mathbb{R})$. Then there is a surjection $F : \mathbb{R} \to X$. We can define an equivalence relation E on \mathbb{R} by

 $xEy \iff F(x) = F(y).$

Jared Holshouser and Stephen Jackson

University of North Texas

Jónsson Properties for General Sets

Suppose $X \in L_{\Theta}(\mathbb{R})$. Then there is a surjection $F : \mathbb{R} \to X$. We can define an equivalence relation E on \mathbb{R} by

$$xEy \iff F(x) = F(y).$$

Note that X is in bijection with \mathbb{R}/E . There is then a (possibly not unique) decomposition of \mathbb{R}/E into a well-ordered component and another component which \mathbb{R} surjects onto and injects into [2]. Call the surjection ϕ_X . Either of these components could be empty.

Jónsson Properties for General Sets

Suppose $X \in L_{\Theta}(\mathbb{R})$. Then there is a surjection $F : \mathbb{R} \to X$. We can define an equivalence relation E on \mathbb{R} by

$$xEy \iff F(x) = F(y).$$

Note that X is in bijection with \mathbb{R}/E . There is then a (possibly not unique) decomposition of \mathbb{R}/E into a well-ordered component and another component which \mathbb{R} surjects onto and injects into [2]. Call the surjection ϕ_X . Either of these components could be empty.

The most general result currently obtainable is the following:

Theorem (AD + $V = L(\mathbb{R})$, H./Jackson)

Suppose that $X \in L_{\Theta}(\mathbb{R})$ is in bijection with $\kappa \cup A$, where κ is an uncountable cardinal and \mathbb{R} maps onto and into A. Similarly, suppose $Y \in L_{\Theta}(\mathbb{R})$ is in bijection with $\lambda \cup B$. Let $f : [\kappa \cup A]^{<\omega} \to \lambda \cup B$. Then there are perfect $P, Q \subseteq \mathbb{R}$ and there is an $H \subseteq \kappa$ with $|H| = \kappa$ so that

$$|\lambda - f[[H \cup \phi_A[P]]^{<\omega}]| = \lambda$$
 and $f[[H \cup \phi_A[P]]^{<\omega}] \cap \phi_B[Q] = \emptyset$.

Background for E_0

Recall the following:

Definition

Let $x, y \in 2^{\omega}$. Then xE_0y iff $(\exists N)(\forall n \ge N)[x(n) = y(n)]$.

Note that $2^{\omega}/E_0$ has no definable linear ordering and E_0 has no definable transversal.

Background for E_0

Recall the following:

Definition

Let $x, y \in 2^{\omega}$. Then xE_0y iff $(\exists N)(\forall n \ge N)[x(n) = y(n)]$.

Note that $2^{\omega}/E_0$ has no definable linear ordering and E_0 has no definable transversal.

The following is a corollary of the Glimm-Effros Dichotomy [1]:

Corollary (AD)

Suppose $H \subseteq 2^{\omega}/E_0$. Then H satisfies exactly one of the following:

- H is countable,
- *H* is in bijection with \mathbb{R} , or
- *H* is in bijection with $2^{\omega}/E_0$.

Mycielski for E_0

Definition

 $A \subseteq 2^{\omega}$ has **power E**₀ iff A is E_0 -saturated and A/E_0 is in bijection with $2^{\omega}/E_0$.

Definition

For $n \in \omega$ and $A \subseteq 2^{\omega}$, let

$$[A]_{E_0}^n = \{ \vec{x} \in [A]^n : |\{ [x_1]_{E_0}, \cdots, [x_n]_{E_0} \}| = n \}$$

Jared Holshouser and Stephen Jackson

Mycielski for E_0

Definition

 $A \subseteq 2^{\omega}$ has **power E**₀ iff A is E_0 -saturated and A/E_0 is in bijection with $2^{\omega}/E_0$.

Definition

For $n \in \omega$ and $A \subseteq 2^{\omega}$, let

$$[A]_{E_0}^n = \{ \vec{x} \in [A]^n : |\{ [x_1]_{E_0}, \cdots, [x_n]_{E_0} \}| = n \}$$

We were able to prove the following Mycielski style result.

Theorem (H./Jackson)

Suppose that $C_n \subseteq (2^{\omega})^n$ are comeager and E_0 -saturated for all $n \in \omega$. Then there is an $A \subseteq 2^{\omega}$ of power E_0 so that $[A]_{E_0}^n \subseteq C_n$ for all n.

Jared Holshouser and Stephen Jackson

\mathbb{R}/E_0 is Strongly Jónsson

Theorem (AD, H./Jackson) $2^{\omega}/E_0$ is strongly Jónsson.

Proof.

- ▶ We can lift $f : [2^{\omega}/E_0]^{<\omega} \to 2^{\omega}/E_0$ to a function $F : [2^{\omega}]^{<\omega} \to 2^{\omega}$ so that $\vec{a}E_0\vec{b} \iff F(\vec{a}) \in f(\{[b_1]_{E_0}, \cdots, [b_n]_{E_0}\}).$
- ▶ We can break *f* into component functions, *f_n*.
- ▶ Find comeager sets on which the *f_n* are continuous.
- ▶ Use the Mycielski-style result for *E*⁰ to thread a power *E*⁰ set through the comeager sets.
- Use continuity and the techniques of the Mycielski-style result to inductively thin out the range of the f_n .

Other Combinations

Proposition (AD, H./Jackson)

Suppose $\kappa, \lambda < \Theta$ are cardinals and that $A, B \in \{\kappa, \lambda, \mathbb{R}, 2^{\omega}/E_0\}$. Then (A, B) is a strong Jónsson pair.

Jared Holshouser and Stephen Jackson

Other Combinations

Proposition (AD, H./Jackson)

Suppose $\kappa, \lambda < \Theta$ are cardinals and that $A, B \in \{\kappa, \lambda, \mathbb{R}, 2^{\omega}/E_0\}$. Then (A, B) is a strong Jónsson pair.

Of particular note is the following:

Proposition (AD, H./Jackson)

Suppose $f : [2^{\omega}/E_0]^n \to \mathbb{R}$. Then there is an $X \subseteq 2^{\omega}/E_0$ with $|X| = 2^{\omega}/E_0$ so that f is constant on $[X]^n$.

Jared Holshouser and Stephen Jackson

Further Work

- ► Can the result be extended to well-ordered unions of hyperfinite quotients of ℝ?
- Can we get this Mycielski style result for other equivalence relations?
- Can the full Jónsson result be proved for general equivalence relations?

References I

 S. Gao. Invariant Descriptive Set Theory. CRC Press, 2008.

[2] L. Harrington and S. Shelah.

Counting equivalence classes for co- $\kappa\text{-suslin}$ equivalence relations.

Logic Colloquium, 108, 1980.

 [3] S. Jackson, R. Ketchersid, F. Schlutzenberg, and W. Woodin. Ad and Jónsson cardinals in L(ℝ). Journal of Symbolic Logic, 79, 2014.

References II

- [4] A. Kanamori. *The Higher Infinite.* Springer, 2009.
- [5] J. Mycielski.

Independent sets in topological algebras.

Fund. Math., 55, 1964.

Jared Holshouser and Stephen Jackson